Использование искусственного света для привлечения рыб получило в промышленном рыболовстве широкое распространение. При помощи метода «на свет» в нашей стране и за рубежом ловится много важных видов промысловых рыб, а еще во времена СССР были разработаны способы бессетевого лова! Но биологическим обоснованием такого явления, как привлечение рыб на свет, ихтиологи заинтересовались не так давно. Рыболовам, чьи уловы далеки от промышленных, как раз полезнее было бы понять биологические основы привлечения рыб на различные световые волны и попробовать применить свои знания на практике!

Первый возникающий вопрос — а каков воспринимаемый рыбами спектр света? Ощущение света у рыб вызывает небольшой участок шкалы электромагнитных волн. Для человека эта шкала заключается между 400 и 760 нм. Обычно считается, что шкала световосприятия у рыб такая же, как и у человека. Поэтому, когда на рыб действуют электромагнитными волнами, лежащими в диапазоне 400-760 нм, подразумевается, что такие волны воспринимаются как свет.


самом деле это далеко не так!
Ихтиологи уже установили, что шкалы световосприятия у разных видов рыб весьма различны. У рыб, обитающих в верхних горизонтах воды (то есть в условиях наиболее полного светового спектра), шкалы световосприятия наиболее широки и приближаются к таким же у человека! А у рыб, обитающих на глубине (в условиях относительно бедного спектрального состава света), максимум световосприятия обычно приходится на коротковолновую область спектра. К тому же следует помнить, что применяемый рыболовами и воспринимаемый рыбами свет может очень сильно различаться. Это относится не только к отдельным участкам спектра, часть которых совершенно не воспринимается рыбами, но и к эффективности всего излучения отдельных источников света.
Тот свет, который обычно применяют в современном рыболовстве и в экспериментах, обычно представляет из себя излучение ламп накаливания, в спектре которых максимум энергии приходится на длинные волны. Большая часть энергии излучения неэффективна, так как она не воспринимается рыбами. В рыболовецких осветительных приборах этот момент не учитывался, и они получались неэффективными и неэкономичным. У многих рыб (например, у каспийских килек, которых активно ловят, используя лампы) положительная реакция на свет усиливается по мере увеличения яркости привлекающего света. На практике оптимальные световые источники должны быть с максимумом световой отдачи в области 500-550 нм (первый тип светильников) и с максимумом световой отдачи в области 550 600 нм (второй тип светильников).

этим соображениям перспективным для рыболовов-любителей является применение светящихся люминофоров постоянного и переменного действия, которыми можно окрашивать искусственные приманки.
Используя светосоставы с различными люминофорами, можно подбирать их спектральное излучение в соответствии со спектром света, воспринимаемым рыбами. Недостатком светящихся люминофоров является их невысокая яркость.
Часто в опытах по привлечению рыб на свет целесообразным оказывается применение излучений, непосредственно не воспринимаемых рыбами. Это относится к «ближнему» ультрафиолетовому излучению (400-300 нм), способному вызывать флюоресценцию органических и неорганических взвесей воды. Такое же свечение наблюдается при массовом развитии светящихся планктонных организмов, часто служащих пищей для рыб. Это свечение не только хорошо воспринимается рыбами, но и ассоциируется у некоторых рыб с массовым скоплением планктонных пищевых организмов. Так что можете попробовать поэкспериментировать с различными флюоресцирующими приманками. Такую приманку не обязательно покупать в специализированных магазинах, ее вполне можно сделать в домашних условиях из различных флюоресцирующих материалов и индивидуально подбирать для каждой рыбы. Только не используйте белый фосфор — потравите себя и рыбу.
Пороговая чувствительность глаза рыб к яркости света зависит от условий предварительной адаптации их к свету или темноте.

роговая чувствительность сетчатки глаза различных рыб к яркости света, предварительно выдержанных 1 час в темноте, приближается к 109 лк, а у тех же рыб, находящихся 1 час на ярком солнечном свете, она падает до 102 лк. Чувствительность рыб к яркости света может меняться в миллион и даже в десятки миллионов раз. Естественно поэтому, что оптимальная величина привлекающего света изменяется в зависимости от яркости освещения окружающего фона. Так что, вооружившись фонарями и другими светящимися и флюоресцирующими агрегатами, посмотрите сперва на небо. Оцените степень освещенности данной местности и как долго подобная освещенность наблюдалась. Ведь оптимальная величина привлекающей яркости света лежит между двумя противоположно действующими на рыб яркостями: пороговой яркостью света, вызывающей у рыб ориентировочную реакцию, и яркостью слепящего света, вызывающей уход рыб. Реакция рыб на искусственный свет зависит от условий предварительной адаптации к свету. Особенно четко это проявляется в изменении реакции на искусственный свет под влиянием лунного освещения. Возьмем для примера море. В безлунные звездные ночи освещенность на поверхности моря в зависимости от облачности колеблется от 104 до 103 лк, и при этом уровне адаптации освещенность привлекающего света достигает примерно 10 лк. В лунные ночи освещенность на поверхности моря колеблется от 101 до 102 лк, при этом освещенность привлекающего света достигает уже величины более 100 лк.
С точки зрения биологии, такое резкое различие чувствительности к яркости света у рыб, адаптированных к лунной или безлунной ночной освещенности, связано с перестройкой световоспринимающего аппарата сетчатки.

и фоновой освещенности от 101 до 102 лк и выше совершается переход к менее чувствительному колбочковому зрению (световая адаптация), а при освещенностях ниже 102 лк — к более чувствительному палочковому зрению (темновая адаптация). В связи с этим при лунном освещении уменьшается чувствительность рыб к яркости источников света и возрастанию величины привлекающего света. В результате уменьшается площадь привлекающего действия света, а это приводит к снижению уловов рыбы.
Однако то, что в лунные ночи рыболов приносит домой жалкий улов, связано не только с уменьшением яркости свечения приманок под влиянием лунного освещения. Причиной уменьшения эффективности привлечения рыб на свет при луне является общее изменение поведения рыб. В полнолуние многие рыбы начинают образовывать стаи и активно питаться, в результате чего сигнальное значение искусственного источника света значительно ослабевает. Яркость его при луне можно несколько увеличить, применяя цветной свет коротковолновой области спектра, например, зеленый. Такое цветное освещение контрастно по сравнению с лунным светом, и создать его можно при помощи как ламп накаливания и соответствующих светофильтров, так и специальных излучателей.
Качество привлекающего света зависит от способности рыб различать цвета.

пример, реакция молоди севрюги максимально выражена на зелено-желтый участок спектра (550-570 нм). Слабее всего реакция выражена на оранжево-красный и сине-фиолетовый участки спектра. Эти результаты были одинаковы в условиях как темновой, так и световой адаптаций. У ставриды же, когда «белый» свет пропускали через красный светофильтр, в пять раз понижавший энергию света, реакция не только не ослабевала, а даже увеличивалась! Итак, в любом киоске покупаете китайскую лазерную указку — и вперед за ставридой. Целесообразность применения цветного света для привлечения рыбы связана со способностью сетчатки ее глаза различать или не различать цвета. Вывод: у рыб, обладающих цветовым зрением, положительная реакция на свет проявляется на цветное освещение. Цветной свет определенной яркости является сигналом, привлекающим рыб. В природных условиях солнечный свет доходит до тех или иных рыб, обитающих на различных горизонтах воды, пройдя определенную качественную и количественную фильтрацию. Так, уже в первых 10 м воды из состава солнечного спектра света выпадают красные, затем оранжевые, желтые и зелено-желтые лучи и происходит значительное ослабление света. Оставшийся солнечный свет приобретает поэтому определенную окраску и интенсивность, с которыми у различных рыб так или иначе связано проявление разных форм жизнедеятельности (стаеобразование, питание, вертикальные миграции, уход от врагов и т.д.). Естественно, что окраска и интенсивность того или иного освещения воды приобретают для рыб определенное сигнальное значение. Именно поэтому на ставриду наибольшее привлекающее действие оказывает оранжево-красный свет невысокой интенсивности, ассоциирующийся с утренней окраской верхних горизонтов воды, в условиях которой происходит стаеобразование и питание этой рыбы. У остальных рыб можно проследить такую же закономерность.


Ну и напоследок о плюсах и минусах различных «светоловов»:

Применение ламп «белого света» с постоянной яркостью имеет следующие недостатки:
— Сильная интенсивность света источников не позволяет многим видам рыб подойти и сконцентрироваться около них, большинство рыб держится вдали от источников света, в зоне определенного освещения;
— «Белый свет» содержит как участки спектра, на которые у данного вида наиболее резко выражена положительная реакция, так и участки спектра с безразличной или отрицательной на них реакцией.
Плюсы:
— Возможность создать очень интенсивный свет, способный проникнуть глубоко в воду;
— Положительная реакция всех светолюбивых рыб на относительно невысокое освещение;

Применение комбинированных источников света (ламп накаливания «белого света» вместе со светофильтрами или монохроматических излучателей) имеет следующие минусы:
— Эти источники имеют небольшую интенсивность(яркость) света;
— Эти излучения сильно поглощаются в воде и в результате резко уменьшается радиус привлечения и сокращается облавливаемая площадь.
Плюсы:
— Вызывает у рыб резкую положительную реакцию.
Идеалом является комбинированное применение обоих типов «светоловов». Кстати, замечено, что многие рыбы более четко реагируют на постоянный свет факелов (или костров), чем на лампы накаливания.


Так что берите фонарики, лампы, цветные светофильтры, лазеры (если вы смелый новатор), факелы (если вы осторожный консерватор) и удачи вам на рыбалке!

Источник: belkamfish.com

В жаркие летние месяцы более чем оправданной является ловля рыбы в ночное время. Первоочередным вопросом в такой рыбалке становится обеспечение освещенности рабочего места и наличие сигнализатора поклевки.

Непосвященному эта тема может показать­ся второстепенной. Мол, купил налобный фонарь, нацепил «светлячок» — и лови. Но при таком подхо­де на рыбалке порой возни­кают серьезные затруднения, которые не только могут испортить впечатление от про­цесса ловли, но и напрямую отразится на ее результатив­ности.

 

Освещение рабочей зоны

Безусловно, главной задачей ночью является обеспечение видимости сигнализаторов поклевки. При ловле удочкой это поплавок, а фидером — квивертип. Но не менее важ­но и освещение рабочего места рыболова.

подготовка к ночной ловле


Подготовку к ночной ловле сле­дует начинать до наступления сумерек. Приготовив прикорм­ку, грамотно выставив под­ставки под удилище надежно зафиксировав кресло, распо­ложив на рабочем столике все необходимое и не забыв раз­ложить садок, можно выбрать точку заброса. К наступлению ночи она должна быть закормлена, а ловля уже идти полным ходом. Переход от светлого времени к темно­му должено происходить плав­но и незаметно. Естественное освещение постепенно сме­няется искусственным. Хорошим выбором для подсветки рабочей зоны являются налобные фонари со свето­диодами, которые крепятся при помощи резинки. Можно использовать их аналоги, вмонтированные в козырьки рыболовных кепок. Однако первый вариант более предпочтителен, так как позволяет регулировать угол поворота фонаря по вертикали, соответственно и направление светового пучка. В результате свет фокусируется в нужной точке и не сильно рассеивается по нежелательной зоне.

светодиодные фонари для ночной рыбалки

Форму (круг, овал или прямо­угольник), размер фонаря, ко­личество светодиодов, сте­пень яркости, защиту от воды можно считать второстепенными характеристиками. Куда важ­нее цвет светового пучка, из­лучаемого фонарем. Он бывает синим, желтым и белым. Первый вариант самый эффективный, поскольку он наи­более яркий и меньше утомляет глаза в ночной ловле.


Заслуживает внимания и стек­ло фонаря. Если оно имеет сферическую форму, свет бу­дет рассеянным. В результате освещается не только нужная точка, но и нежелательное окружающее пространство. Фонари с плоским стеклом подходят больше, так как их све­товой пучок более собранный, концентрированный, яркий. Включать налобный осветительный прибор рекомендую только на короткое время для выполнения конкретной за­дачи, причем в режиме мини­мального уровня яркости. Не разделяю мнения, что искус­ственный свет не отпугивает рыбу. Когда ночь светлая, а оснастка забрасывается фи­дером на значительное рас­стояние от берега, включение фонаря на длительное время некритично. Если же ночь непроглядная, вспышка света при ловле коротким удили­щем с поплавком в прибрежной зоне может привести к нежелательным послед­ствиям. Конечно, лещ не боит­ся лунной дорожки, однако лунный свет — это естественное природное явление, в отличие от света фонаря. Поэтому рыба может покинуть да­же прикормленное место. Забросы лучше делать в темноте. Для этого надо заранее, до сумерек, определить ориентир, который будет заметен ночью. Рыболовное кресло выставить так, чтобы этот ориентир находился на линии глаз. Сектор ловли лучше выбирать пониженной слож­ности, чтобы минимизировать зацепы оснастки за надводные растения, прибрежные деревья и пр. Дистанция лов­ли не должна быть максимальной. Под куполом звездного неба выполнять силовые выверенные забросы осна­стки на пределе возможно­стей крайне сложно.


Ночная рыбалка

Не простым ночью оказыва­ется и процесс вываживания рыбы, особенно при ловле по­плавочной удочкой с деликатной оснасткой при наличии вод­ной растительности. С одной стороны, искусственный свет способен облегчить эту зада­чу, а с другой — осложнить ее. Последнее связано с непред­сказуемой реакцией рыбы, ко­торая, попав в центр светово­го пятна, может значительно усилить сопротивление. Поэ­тому если без света можно обойтись, то лучше его и не включать.

 

Освещение поплавочной оснастки

Незаменимым элементом освещения поплавка являет­ся так называемый «светля­чок» (light stick). Он представляет собой пластиковую кап­сулу с флуоресцентным кра­сителем и оксалатом (слож­ный эфир щавелевой кисло­ты), при надломе которой ло­пается расположенная внутри стеклянная колбочка с перекисью водорода. При смешивании двух субстанций происходит химическая реакция, сопровождающаяся световым излучением.

Светлячки для поплавка

В зависимости от типа краси­теля в капсуле такая насадка выпускается нескольких цве­тов — зеленого, синего, желтого и красного.

Продолжительность освечения от 12 до 15 часов, хотя могут встретися и те которые горят пару суток. Иногда просто яр­кость свечения становится на порядок ниже. Поэтому на од­ну ночь, особенно летнюю, вполне хватит любой. Только не следует забывать, что уже светящуюся капсулу время от времени следует встряхивать. Когда она установлена на по­плавке, излучающая свет суб­станция скатывается вниз и свечение ослабевает, нужно только встря­хнуть капсулу несколькими щелчками пальцев. Получает­ся быстро и эффективно. Стоит обратить внимание на переходник для крепления «светлячка» на поплавочной антенне. Обычно это отрезок прозрачной полимерной тру­бочки. У непроверенных про­изводителей она бывает слишком короткой, и капсула может слететь при забросе. Поэтому хорошо иметь запас собственных трубочек различного диаметра.

На поплавке со съёмной ан­тенной можно устанавливать «светлячки» в гнездо его тела. В этом случае нужно не промахнуться с диаметром при­обретаемых капсул, который указан на упаковке.

Хранить «светлячки» дома лучше на дверце холодиль­ника, чтобы они не потеряли рабочих свойств.

И еще один совет: при ноч­ном докармливании рыбы луч­ше обойтись без включения налобного фонаря, направленного на сектор ловли, а ограничиться капсулой — «ма­ячком» поплавка, естествен­ным ночным освещением и собственными навыками за­броса заранее приготовленных шаров.

 

Освещение фидерной оснастки

Несмотря на то, что капсулы — «светлячки» предназначены не только для ночной попла­вочной, но, и для фидерной рыбалки, от их использования при донной ловле большинство отказывается. Во-первых, специальный пластиковый крепеж, входящий в комплект капсу­лы, не всегда плотно защелкивается на вершинке фидера и прокручивается. Но даже если под него подложить не­сколько витков скотча или ре­шить проблему путем фикса­ции между вторым и третьим, либо третьим и четвертым кольцами, крепеж создает неудобства в процессе рыбал­ки. За него захлестывается «плетенка» или монолеска, возрастает вероятность по­ломки квивертипа. Контроль поклевки с помощью наблюдения за «светлячком» на вершинке неэффективен, особенно при ловле на озере, когда фидер располагается параллельно линии горизон­та.

Фидерная ловля ночью

На фоне усиливающегося в темноте напряжения глаз светящаяся капсула начина­ет – «плавать» и создается иллюзия поклевки. Некоторые решают проблему, устанавливая перед вершинкой специально изготовленный контрастный белый экран, на фоне которого отклонения вершинки при поклевке видны лучше. Но даже в этом случае требуется подсветка. Что бы избежать ранее сказанного, необходимо, слева или справа от фидерной вершинки на расстоянии 10-20 см от нее устанавить аккуму­ляторный фонарь под таким углом, чтобы излучаемый луч света был направлен вверх, а не на воду. Зарядки хорошего аккумуляторного фона­ря хватает на несколько но­чей.

При таком вариан­те удобно выважи­вать рыбу, не вклю­чая налобный фо­нарь, который не­обходим только для работы с приманка­ми и прикормкой, а иной раз для вы­полнения забросов, если служащая ориентиром точка на противополож­ном берегу неза­метна в темноте. Весьма распространенное мнение о том, что ночью при ловле фидером можно обойтись без непре­рывного освещения, а ориентироваться только на бу­бенчик или колокольчик, за­крепленный на подставке уди­лища, ошибочно. Иной раз летними ночами абсолютное большинство поклевок малозаметно. Вершинка удилища лишь слегка отклоняется от исходного положения, не при­водя к звону сигнализатора. Поэтому легко прозевать мо­мент для подсечки.

В заключение можно припомнить про­стое правило. При ловле ночью следует аккуратно об­ращаться с фидером при заполнении кормушки и насаживании приманки. «Плетенка» или монофильная леска долж­ны всегда находиться в натя­жении во избежание зацепа за вершинку. Когда подготовка к забросу завершена, следует проверить их свободный ход и только затем выполнять за­брос, чтобы избежать полом­ки квивертипа. Подобная или иная допущенная ночью оплошность оборачиваются значительно большими потерями времени и нер­вов, нежели днем.

Источник: www.ohota-and-ribalka.ru

Закономерности распределения световых пятен на рыбах — тоже одна из загадок подводного мира. На снимке — экземпляр Chauliodus Sloani.

Почему собираются стаи рыб у лампочки, опущенной в глубину? Почему некоторые виды глубоководных рыб приспособились ловить добычу на свет — при помощи длинной гибкой струны, заканчивающейся светящейся точкой, которая привлекает мелкую рыбешку? Некоторые ученые считают «светолюбивость» рыб проявлением так называемого «кормного рефлекса», так как планктон — нижнее звено пищевой цепи в море — питается и размножается только на свету, все последующие звенья должны следовать за ним.

Но так ли это?

В опытах на молоди щук голландский ученый Ферхайн установил, что реакция рыб на свет слагается из трех этапов: сперва они скашивают глаза в сторону лампочки, затем навстречу лучам поворачиваются телом и, наконец, рыба устремляется к источнику света, пока не столкнется с ним. Никаких действий, которые напоминали бы поиск корма, ученый не наблюдал. Японский биолог Кавамото проводил свои эксперименты в круглом бассейне, над которым двигалась по кругу маленькая электролампа. Рыбы следили за ней, поворачиваясь всем телом, но при этом старались держаться в тени от стен бассейна. Советские исследователи заметили, что черноморские рыбы вблизи опущенного в воду фонаря сначала движутся беспорядочно, а затем начинают плыть по кругу — почему-то с удивительным постоянством против часовой стрелки. Очевидно, здесь уже вступает в действие какой-то стайный рефлекс.

Во время исследований в Тихом океане ученые наблюдали оживленные игры рыб, порой с элементами акробатики: разогнавшись в направлении источника света, они вдруг резко сворачивали вверх и выскакивали из воды на два-три метра. Черноморские рыбы-иглы, собираясь у лампы в хороводы, иногда становятся вдруг вертикально, словно хотят погреть животы.

Весьма индивидуально реагируют рыбы на внезапное выключение подводных люстр. Сайра, например, поднимается к поверхности и мечется как бы в поисках утраченного света. Сардина и хамса теряют ориентацию, а при повторном включении света непременно возвращаются к нему, что не всегда делают другие рыбы. Ставрида поспевает на свет гораздо быстрее, чем рыбы, которыми она питается.

Эти наблюдения говорят о том, что «пищевое» толкование реакции рыб на свет, хотя и не лишено оснований, все же не объясняет ее до конца. Большинство ученых в последнее время склоняется к мысли, что в этом случае над «кормным рефлексом» доминирует так называемый «исследовательский» — тот, который И. П. Павлов называл рефлексом «что такое?». Павлов писал, что ежеминутно всякий новый раздражитель вызывает соответствующие движения, чтобы лучше, полнее познать этот раздражитель. Исследовательский рефлекс лежит в основе чувства самосохранения и свойствен всем живым существам. В том числе, естественно, и рыбам.

Выяснилось, что имеет значение не только яркость фонаря (слишком сильный свет, например, заставляет рыбу держаться подальше), но и длина волны источника света, то есть цвет лучей.

Так, наблюдения показали, что ставрида лучше идет на оранжевый свет, синий горбыль — на зеленый и синий; килька предпочитает белый. Некоторые ученые считают, что кальмары реагируют на фиолетовые лучи, другие же вообще отрицают наличие у них цветового зрения. Стайные рыбы вроде бы любят зеленый свет, однако опыты показали, что есть среди них и такие, которые совсем безразличны к цвету, лишь бы светило. По некоторым наблюдениям, черноморская сайра чаще тянется к белому свету, хотя в Охотском море эта же рыба больше «любит» красные области спектра.

Вообще же чувствительность рыбьего глаза чрезвычайно высока и изменяется в широких пределах. Советский исследователь В. Протасов разработал оригинальную методику определения световосприятия у рыб. Он сконструировал прибор, способный регистрировать и во много раз усиливать биотоки, возникающие под действием света в зрительном нерве. Выловленной рыбе вводят в нерв микроэлектрод и, освещая ее разными источниками света, записывают кривые биотоков. Оказалось, что у рыбы, обитающей в приповерхностных горизонтах моря, шкала световосприятия близка к человеческой; у более глубоководных рыб она несравненно уже. Объясняется это тем, что с глубиной солнечный свет становится беднее длинноволновыми (красными) компонентами и вообще резко ослабляется.

Исследования «светового феномена» рыб ведутся сейчас во всем мире… А пока идут научные споры и ставятся лабораторные и «полевые» эксперименты, источник света становится орудием лова рыбы.

И тут вроде бы все ясно: свет помогает ловить рыбу — да здравствует свет! Наука пусть себе занимается своими тонкостями, а если вдобавок выдаст какие-нибудь рекомендации — еще лучше. Но вопросы, и довольно нелегкие, все же возникают. Не жестоко ли, точнее, не слишком ли грубо человек будет вмешиваться в жизнь моря, созывая его обитателей в искусственные косяки специально для того, чтобы их выловить? Известна ли точно та грань, где интенсивный лов превращается в хищнический?

Задуматься над этим стоит хотя бы потому, что науке хорошо известен предел рыбопродуктивности Мирового океана и промысел подходит к нему на внушительной скорости. Опасность состоит в том, что, достигнув предела, человечество навряд ли сможет сразу остановиться. Ну а имея в руках такие производительные способы, как лов на свет, остановиться еще труднее…

С другой стороны, искусственное сдерживание технического прогресса тоже кажется задачей сомнительной, да и нереальной. Как же быть?

Думается, дело все же не в самом новом способе лова. Известно, что биологическую продуктивность морей особенно подрывают переловы отдельных видов рыб. Если бы были хорошо известны запасы сельди, горбуши, трески, скумбрии, ставриды, можно было бы, оперативно меняя стратегию отлова, хозяйствовать в морях и океанах более разумно. К сожалению, о перелове мы узнаем лишь тогда, когда он уже произошел. С камбалой, например, так случилось дважды: накануне первой мировой войны, когда для рыбных ресурсов в целом никакой угрозы еще не было, и в 30-е годы (запасы возобновлялись в военные годы: рыбаки выходили в море куда реже обычного). Вот здесь-то может оказаться весьма кстати избирательность лова на свет. Ведь отдельные виды реагируют на него по-разному, и если количество особей какого-либо вида начнет сокращаться, это можно будет заметить гораздо раньше, чем при обычном промысле, и принять эффективные меры.

В Северной Атлантике сельдь в массовом количестве пожирают пикша и треска — очевидно, здесь лучше в первую очередь отлавливать этих хищников. И опять-таки решить задачу во многом помогла бы соответствующая «световая политика».

А вот еще один аспект. Рачок черноглазка, как установлено, охотно идет на очень яркий свет, в то время как рыба его избегает. Появляется возможность наладить промышленный лов этого вида планктона, запасы которого в океане огромны.

Будущее рыболовства именно в подобном совмещении науки и практики.

Раскрыв тайны «светового феномена», как и других загадок поведения рыб, наука сделает еще один шаг на пути превращения Мирового океана в разумно регулируемое хозяйство.

В. Шикан

Источник: www.vokrugsveta.ru

PDFПечатьE-mail

Новости — Новости

Рейтинг пользователей:Ловля рыбы на светЛовля рыбы на светЛовля рыбы на светЛовля рыбы на светЛовля рыбы на свет / 0
ХудшийЛучший 

Использование искусственного света для привлечения рыб получило в промышленном рыболовстве широкое распространение. При помощи метода «на свет» в нашей стране и за рубежом ловится много важных видов промысловых рыб, а еще во времена СССР были разработаны способы бессетевого лова! Но биологическим обоснованием такого явления, как привлечение рыб на свет, ихтиологи заинтересовались не так давно. Рыболовам, чьи уловы далеки от промышленных, как раз полезнее было бы понять биологические основы привлечения рыб на различные световые волны и попробовать применить свои знания на практике!

 

Первый возникающий вопрос — а каков воспринимаемый рыбами спектр света? Ощущение света у рыб вызывает небольшой участок шкалы электромагнитных волн. Для человека эта шкала заключается между 400 и 760 нм. Обычно считается, что шкала световосприятия у рыб такая же, как и у человека. Поэтому, когда на рыб действуют электромагнитными волнами, лежащими в диапазоне 400-760 нм, подразумевается, что такие волны воспринимаются как свет. На самом деле это далеко не так!
Ихтиологи уже установили, что шкалы световосприятия у разных видов рыб весьма различны. У рыб, обитающих в верхних горизонтах воды (то есть в условиях наиболее полного светового спектра), шкалы световосприятия наиболее широки и приближаются к таким же у человека! А у рыб, обитающих на глубине (в условиях относительно бедного спектрального состава света), максимум световосприятия обычно приходится на коротковолновую область спектра. К тому же следует помнить, что применяемый рыболовами и воспринимаемый рыбами свет может очень сильно различаться. Это относится не только к отдельным участкам спектра, часть которых совершенно не воспринимается рыбами, но и к эффективности всего излучения отдельных источников света.
Тот свет, который обычно применяют в современном рыболовстве и в экспериментах, обычно представляет из себя излучение ламп накаливания, в спектре которых максимум энергии приходится на длинные волны. Большая часть энергии излучения неэффективна, так как она не воспринимается рыбами. В рыболовецких осветительных приборах этот момент не учитывался, и они получались неэффективными и неэкономичным. У многих рыб (например, у каспийских килек, которых активно ловят, используя лампы) положительная реакция на свет усиливается по мере увеличения яркости привлекающего света. На практике оптимальные световые источники должны быть с максимумом световой отдачи в области 500-550 нм (первый тип светильников) и с максимумом световой отдачи в области 550 600 нм (второй тип светильников). По этим соображениям перспективным для рыболовов-любителей является применение светящихся люминофоров постоянного и переменного действия, которыми можно окрашивать искусственные приманки.
Используя светосоставы с различными люминофорами, можно подбирать их спектральное излучение в соответствии со спектром света, воспринимаемым рыбами. Недостатком светящихся люминофоров является их невысокая яркость.
Часто в опытах по привлечению рыб на свет целесообразным оказывается применение излучений, непосредственно не воспринимаемых рыбами. Это относится к «ближнему» ультрафиолетовому излучению (400-300 нм), способному вызывать флюоресценцию органических и неорганических взвесей воды. Такое же свечение наблюдается при массовом развитии светящихся планктонных организмов, часто служащих пищей для рыб. Это свечение не только хорошо воспринимается рыбами, но и ассоциируется у некоторых рыб с массовым скоплением планктонных пищевых организмов. Так что можете попробовать поэкспериментировать с различными флюоресцирующими приманками. Такую приманку не обязательно покупать в специализированных магазинах, ее вполне можно сделать в домашних условиях из различных флюоресцирующих материалов и индивидуально подбирать для каждой рыбы. Только не используйте белый фосфор — потравите себя и рыбу.
Пороговая чувствительность глаза рыб к яркости света зависит от условий предварительной адаптации их к свету или темноте. Пороговая чувствительность сетчатки глаза различных рыб к яркости света, предварительно выдержанных 1 час в темноте, приближается к 109 лк, а у тех же рыб, находящихся 1 час на ярком солнечном свете, она падает до 102 лк. Чувствительность рыб к яркости света может меняться в миллион и даже в десятки миллионов раз. Естественно поэтому, что оптимальная величина привлекающего света изменяется в зависимости от яркости освещения окружающего фона. Так что, вооружившись фонарями и другими светящимися и флюоресцирующими агрегатами, посмотрите сперва на небо. Оцените степень освещенности данной местности и как долго подобная освещенность наблюдалась. Ведь оптимальная величина привлекающей яркости света лежит между двумя противоположно действующими на рыб яркостями: пороговой яркостью света, вызывающей у рыб ориентировочную реакцию, и яркостью слепящего света, вызывающей уход рыб. Реакция рыб на искусственный свет зависит от условий предварительной адаптации к свету. Особенно четко это проявляется в изменении реакции на искусственный свет под влиянием лунного освещения. Возьмем для примера море. В безлунные звездные ночи освещенность на поверхности моря в зависимости от облачности колеблется от 104 до 103 лк, и при этом уровне адаптации освещенность привлекающего света достигает примерно 10 лк. В лунные ночи освещенность на поверхности моря колеблется от 101 до 102 лк, при этом освещенность привлекающего света достигает уже величины более 100 лк.
С точки зрения биологии, такое резкое различие чувствительности к яркости света у рыб, адаптированных к лунной или безлунной ночной освещенности, связано с перестройкой световоспринимающего аппарата сетчатки. При фоновой освещенности от 101 до 102 лк и выше совершается переход к менее чувствительному колбочковому зрению (световая адаптация), а при освещенностях ниже 102 лк — к более чувствительному палочковому зрению (темновая адаптация). В связи с этим при лунном освещении уменьшается чувствительность рыб к яркости источников света и возрастанию величины привлекающего света. В результате уменьшается площадь привлекающего действия света, а это приводит к снижению уловов рыбы.
Однако то, что в лунные ночи рыболов приносит домой жалкий улов, связано не только с уменьшением яркости свечения приманок под влиянием лунного освещения. Причиной уменьшения эффективности привлечения рыб на свет при луне является общее изменение поведения рыб. В полнолуние многие рыбы начинают образовывать стаи и активно питаться, в результате чего сигнальное значение искусственного источника света значительно ослабевает. Яркость его при луне можно несколько увеличить, применяя цветной свет коротковолновой области спектра, например, зеленый. Такое цветное освещение контрастно по сравнению с лунным светом, и создать его можно при помощи как ламп накаливания и соответствующих светофильтров, так и специальных излучателей.
Качество привлекающего света зависит от способности рыб различать цвета. Например, реакция молоди севрюги максимально выражена на зелено-желтый участок спектра (550-570 нм). Слабее всего реакция выражена на оранжево-красный и сине-фиолетовый участки спектра. Эти результаты были одинаковы в условиях как темновой, так и световой адаптаций. У ставриды же, когда «белый» свет пропускали через красный светофильтр, в пять раз понижавший энергию света, реакция не только не ослабевала, а даже увеличивалась! Итак, в любом киоске покупаете китайскую лазерную указку — и вперед за ставридой. Целесообразность применения цветного света для привлечения рыбы связана со способностью сетчатки ее глаза различать или не различать цвета. Вывод: у рыб, обладающих цветовым зрением, положительная реакция на свет проявляется на цветное освещение. Цветной свет определенной яркости является сигналом, привлекающим рыб. В природных условиях солнечный свет доходит до тех или иных рыб, обитающих на различных горизонтах воды, пройдя определенную качественную и количественную фильтрацию. Так, уже в первых 10 м воды из состава солнечного спектра света выпадают красные, затем оранжевые, желтые и зелено-желтые лучи и происходит значительное ослабление света. Оставшийся солнечный свет приобретает поэтому определенную окраску и интенсивность, с которыми у различных рыб так или иначе связано проявление разных форм жизнедеятельности (стаеобразование, питание, вертикальные миграции, уход от врагов и т.д.). Естественно, что окраска и интенсивность того или иного освещения воды приобретают для рыб определенное сигнальное значение. Именно поэтому на ставриду наибольшее привлекающее действие оказывает оранжево-красный свет невысокой интенсивности, ассоциирующийся с утренней окраской верхних горизонтов воды, в условиях которой происходит стаеобразование и питание этой рыбы. У остальных рыб можно проследить такую же закономерность.

Ну и напоследок о плюсах и минусах различных «светоловов»:

Применение ламп «белого света» с постоянной яркостью имеет следующие недостатки:
— Сильная интенсивность света источников не позволяет многим видам рыб подойти и сконцентрироваться около них, большинство рыб держится вдали от источников света, в зоне определенного освещения;
— «Белый свет» содержит как участки спектра, на которые у данного вида наиболее резко выражена положительная реакция, так и участки спектра с безразличной или отрицательной на них реакцией.
Плюсы:
— Возможность создать очень интенсивный свет, способный проникнуть глубоко в воду;
— Положительная реакция всех светолюбивых рыб на относительно невысокое освещение;

Применение комбинированных источников света (ламп накаливания «белого света» вместе со светофильтрами или монохроматических излучателей) имеет следующие минусы:
— Эти источники имеют небольшую интенсивность(яркость) света;
— Эти излучения сильно поглощаются в воде и в результате резко уменьшается радиус привлечения и сокращается облавливаемая площадь.
Плюсы:
— Вызывает у рыб резкую положительную реакцию.
Идеалом является комбинированное применение обоих типов «светоловов». Кстати, замечено, что многие рыбы более четко реагируют на постоянный свет факелов (или костров), чем на лампы накаливания.

Так что берите фонарики, лампы, цветные светофильтры, лазеры (если вы смелый новатор), факелы (если вы осторожный консерватор) и удачи вам на рыбалке!

Источник: xn--80afwp8b.com

Ловля рыбы на свет

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector